Guiding Your Team to Greater Autonomy

Feeding delays can have an impact on patient outcomes

- An estimated 1/3 of patients enter hospital malnourished¹
- An additional 1/3 will develop malnutrition during their stay¹

In one study, 1/5 of hospitalised patients 65 years of age or older had an average nutrient intake of less than 50% of their calorie needs²

Malnutrition can result in nearly 3x higher hospitalisation costs and nearly 3x longer hospital stay³

Consequences of malnutrition in hospital patients

Patients with malnutrition have:

3

1.Tappenden KA, et al. J Acad Nutrition Dietetics 2013;113(9):1219–37; 2. Barker LA, et al. Int J Environ Res Public Health 2011;8(2):514–27; 3. Guenter P, et al. J Qual Patient Safety 2015;41(10):469–73; 4. Lim SL, et al. Clin Nutrit 2012;31(3):345–50; 5. Corkins MR, et al. J Parenteral Enteral Nutr 2014;38(2):186–95; 6. BAPEN report. The cost of malnutrition in England and potential cost savings from nutritional interventions. 2015 Available from http://www.bapen.org.uk/pdfs/economic-report-short.pdf Last accessed June 2020.

ΔVΔNOS

Achieving early enteral nutrition is vital

Achieving early enteral nutrition in critically ill patients is associated with:¹⁻⁴

Fewer major complications (including infections)

Reduced hospital stay

Cost savings

£

Identifying and treating malnutrition appropriately and implementing the NICE clinical guidance⁵ can lead to potential estimated cost savings of £126,649,987⁶

1. Managing Adult Malnutrition in the Community 2017 Available from: www.malnutritionpathway.co.uk Last accessed April 2020; 2. Harvey S, et al. *Health Technol Assess* 2016;20:28; 3. Doig G, et al. *Intensive Care Med* 2009;35:2018–27; 4. Elke G, et al. *Critical Care* 2016;20:117; 5. NICE CG32 2006. Available from: www.nice.org.uk/Guidance/cg32 Last accessed April 2020; 6. BAPEN report. The cost of malnutrition in England and potential cost savings from nutritional interventions. 2015 Available from http://www.bapen.org.uk/pdfs/economic-report-short.pdf Last accessed June 2020.

Giving patients the nutritional support they need

- Enteral nutrition is preferred over parenteral nutrition in people who are malnourished or at risk of malnutrition¹⁻³
 - Unless there is upper gastrointestinal dysfunction (e.g. non-functional, inaccessible or perforation) or enteral nutrition is inadequate

5

If the GUT works – Use it!

ΔνΔΝΟΣ

Nasogastric feeding: Safety implications

Main causes of harm caused by misplaced feeding tubes¹

- Misinterpretation of x-rays
- Feeding despite aspirate between pH6 and pH8
- Instilling water before obtaining aspirate
- No checking of tube placement

The main causal factor leading to harm

Nasogastric feeding: Patient safety alert and assessment

NPSA, NHS England and NHS Improvement published the number of events where fluids or medication were introduced into the respiratory tract or pleura via a misplaced nasogastric or orogastric tube^{1,2}

- Studies suggest this may be a considerable underestimate, with inadvertent placement into the bronchi occurring in 2–4% of blind placements³
- This suggests a potential rate of misplaced tubes in the UK of 5,000–110,000 per annum, with the potential to cause significant morbidity and mortality³
- Furthermore, rates of pneumothorax from bronchial tube placements may be as high as 18.7–26%, with an associated mortality of 2.7–4%³

ΔνΔΝΟS

NPSA. Reducing the harm caused by misplaced nasogastric feeding tubes in adults, children and infants. 2011. Available from: http://www.procurement.wales.nhs.uk/23814.file.dld Last accessed April 2020; 2. NHS Improvement. Patient Safety Alert NHS/PSA/RE/2016/006. Nasogastric tube misplacement: continuing risk of death and severe harm. 2016. Available from: https://improvement.nhs.uk/uploads/documents/Patient_Safety_Alert_Stage_2_-_NG_tube_resource_set.pdf. Last accessed April 2020; 3. Smithard D, et al. *Dysphagia* 2015;30:275–285; 4. Lei K, et al. *Crit Care* 2007;11(Suppl 2):P151.

Known consequences of enteral tube misplacement

If enteral tube misplacement is not identified before feeding is commenced, the consequences can be serious, including:¹⁻³

Reduce the time-to-feed to minimise the risk of malnutrition

Facilitate early Provide real-Key components to the solution for Efficiently place time feedback CORTRAK* to address:1-4 during placement 1-4 Reduce the need for endoscopy and multiple x-rays to confirm tube placement $(NJ and NG)^{1-3}$ Reduce the Reduce patient burden on improves the iournev^{1,3,4} Direct tubes to desired feeding placement¹⁻³

Guided Placement addresses the challenges and provides the solution

Ensuring prompt enteral tube placement

Efficient placement ¹⁻³	Timely feeding ¹⁻³	Reduced burden ¹⁻³
 Visualisation at bedside Direct tubes to desired feeding placement with real-time feedback Immediately identify misplaced tubes Minimise complications, such as lung placements 	 Can significantly reduce the time-to-feed More efficient than blind placements 	 Address feeding needs more quickly Can improve patient outcomes Save time and resources Reduce patient suffering
78.0%–98.4% tubes successfully placed ^{1–4}	66% reduction in the time between order for tube placement and initiation of feeding ²	Saving of \$150-\$232 per tube ^{2,4}

Guided placement facilitates nasointestinal feeding

 CORTRAK* facilitates post-pyloric tube insertion at the bedside and reduces the need for confirmatory x-rays, allowing early enteral feeding¹⁻⁷

- Placement of post-pyloric tubes take on average 42 mins for blind placement vs 15.5 mins for CORTRAK^{+,6}

- 66% reduction in the time between order for tube placement and initiation of feeding⁴
- With CORTRAK*, even patients with delayed gastric emptying can receive more effective nutrition compared to using prokinetics alone²

Δνδνος

[†]Based on a systemic literature review of nine studies. 1. Taylor S, et al. *Br J Nurs* 2014;23:352, 354–8; 2. Taylor J, et al. *J Parenter Enteral Nutr* 2010;34:289–294; 3. Wang X, et al. *J Invest Surg* 2014;27:21–26; 4. Gray R, et al. *Nutr Clin Pract* 2007;22:436–444; 5. Stockdale W, et al. Poster presented at the American Society for Parenteral and Enteral Nutrition Meeting, 2007; 6. Smithard D, et al. *Dysphagia* 2015;30:275–285; 7. NICE MIB48 2016. Available at: www.nice.org.uk/advice/mib48/chapter/Appendix#table-7-overview-of-the-powers-et-al-2011-study Accessed April 2020.

Guided placement the solution

Supporting patient care by confirming that CORTRAK* is:

Q	Accurate	 CORTRAK* virtually eliminates the risk of tube misplacement (0% vs. 1.77% misplacements with conventional methods)^{+,1} o However, tube misplacements can occur if healthcare professionals are not suitably trained² Tube position with CORTRAK* is 97.5% accurate when confirmed with x-ray^{+,1}
••	Fast	 CORTRAK* reduces: The average time to start of enteral feeding to 11.5 hours vs. 21.5 hours for blind placement^{+,1} The mean intubation time to 9.6 minutes vs. 11.6 minutes with blind placement, or 122 minutes with blind placement plus x-ray confirmation (p<0.001)³ The mean placement time in critically ill patients to 7.6 minutes with successful placement even after gastrointestinal surgery³
T	Economical	 More rapid and safer tube insertion is cost effective compared to blind placement using a variety of estimates, settings and outcomes^{+,1}

ΔνΔΝΟΣ

CORTRAK*: Feeding Tube placement without delay

- An electromagnetic stylet provides real-time location information on the tube tip placement within a patient's anatomy¹
- On-screen visualisation provides immediate feedback on tube entry into the upper airway, allowing repositioning before final placement ^{1,2}

Cost savings with CORTRAK*

In a 14-month retrospective review of 39 tube placements in 38 patients, CORTRAK* was associated with:¹

NICE advice for CORTRAK* reports cost savings of £41 to £143 per placement (based on 2 conference abstracts and 4 published studies)²

CORTRAK* delivers real cost savings by reducing the need for x-rays and parenteral nutrition^{1,3,4}

• In addition, CORTRAK* can help reduce the unnecessary exposure to X-ray radiation^{1,4}

CORTRAK*: reducing **RISK**, reducing **COST**

