Neurally adjusted ventilatory assist

for patients at risk of extended ventilation:

A randomised feasibility trial with local and national surveys

Daniel Hadfield

ics updates

Mechanical ventilation (MV)

MV automation (Neurally Adjusted Ventilatory Assist - NAVA) Duration associated with \uparrow morbidity, mortality & cost

Limitations to current practice / opportunities to improve (dysynchrony; over/under assist; time and expertise; national practice variation)

Automated weaning tech: meets patient need NAVA matches support to diaphragm electrical activity

MV weaning

/intensivecaresociety

/intensive-care-society

NAVA evidence pre 2014 – numerous physiological studies

Lise Piquilloud Laurence Vignaux Emilie Bialais	Neurally adjusted ventilatory assist improves patient-ventilator interaction
Jean Roeseler	Intensive Care Med (2011) 37:263–271 DOI 10.1007/s00134-010-2052-9

No large clinical trials of NAVA

Duration associated with \uparrow morbidity, mortality & cost

Limitations to current practice / opportunities to improve (dysynchrony; over/under assist; time and expertise; national practice variation)

Automated weaning tech: meets patient need

NAVA matches support to diaphragm electrical activity

@ics_updates

@ics_updates

Methods / results

****Extensive peer review** (NIHR applications / UKCCRF / conferences etc.)

Development / adaption to new guidance (Consort extension to randomized pilot & feasibility trials, 2016)

Overall aim: To investigate important uncertainties and test methods prior to a large effectiveness trial (feasibility)

1. A parallel group, allocation concealed, open label, pilot randomised controlled trial

Sample size: 76 patients (38 in each arm)

- P IMV + risk of extended support (COPD, Heart Failure, or ARDS)
- NAVA (monitor / mode)

@ics_updates

- C Usual care using PSV
- Compliance (% eligible time in ventilation mode) Exploratory secondary including VFDs, LOS and sedation
- Feasibility: Mode adherence, protocol compliance, protocol acceptability Median (95%CI) adherence 83.1% (64.0–97.1%); protocol compliance 66.7% (50.3–80.0%) Physician refusal (12%) & consent rates (72%)
- **Exploratory outcomes** suggest potential clinical benefit for NAVA More VFDs to D28 (p = 0.04); fewer in-hospital deaths (p = 0.032); RASS scores closer to 0 (p=0.02)

2. Single centre, web and paper cross-sectional ICU staff survey

Aim: To investigate experience, attitudes, beliefs, facilitators and barriers to NAVA use and future research

Design: Single centre, web and paper cross-sectional ICU staff survey. 39 mixed open and structured questions. Rigorous development and testing

Of 466 distributed questionnaires, 301 (64.6%) were returned from 236 nurses (78.4%), 53 doctors (17.6%) and 12 physiotherapists (4.0%).

-Belief that NAVA is safe and clinically effective

- Low confidence; perception of technical difficulty; need for
- Strong support for future research

/intensive-care-society

/intensivecaresociety

Research outputs

2020

Hadfield et al. Critical Care (2020) 24:220 https://doi.org/10.1186/s13054-020-02923-5 Critical Care Open Access

> Check for updates

Neurally adjusted ventilatory assist versus pressure support ventilation: a randomized controlled feasibility trial performed in patients at risk of prolonged mechanical ventilation

Daniel J. Hadfield^{1,2}*, Louise Rose^{3,4}, Fiona Reid⁵, Victoria Cornelius⁶, Nicholas Hart^{2,7}, Clare Finney¹, Bethany Penhaligon¹, Jasmine Molai¹, Clair Harris¹, Sian Saha¹, Harriet Noble¹, Emma Clarey¹, Leah Thompson¹, John Smith¹, Lucy Johnson¹, Phillip A. Hopkins^{1†} and Gerrard F. Rafferty^{2†}

2020

BMJ Open Respiratory Research

Critical care

@ics_updates

Factors affecting the use of neurally adjusted ventilatory assist in the adult critical care unit: a clinician survey

Daniel Hadfield,^{1,2} Louise Rose,^{3,4} Fiona Reid,⁵ Victoria Cornelius,⁶ Nicholas Hart,^{7,8} Clare Finney,¹ Bethany Penhaligon,¹ Clare Harris,¹ Sian Saha,¹ Harriet Noble,¹ John Smith,¹ Philip Anthony Hopkins,¹ Gerrard Francis Rafferty²

1	ICS 2022	Oral Pres	NAVA: A randomised, controlled, clinical and cost effectiveness trial
2	BACCN 2022	Oral Pres	Weaning modes of mechanical ventilation
3	UKCCRF 2021	Oral Pres	NAVA in the adult critical care unit
4	ESICM 2019	Poster	NAVA: A cross-sectional staff survey
5	UKCCRF 2018	Oral Pres	NAVA vs PSV in Prolonged Weaning
6	ATS 2018	Poster	NAVA vs Pressure Support in Prolonged Mechanical Ventilation: A Randomised Feasibility Study
7	ESICM 2018	Poster	The effect of NAVA on sedation score and sedation load
8	ESICM 2018	Poster	A pilot study to develop the feasibility of patient- controlled ventilatory weaning using NAVA
9	BACCN 2017	Oral Pres	NAVA in prolonged ventilation
10	ISICEM 2017	Poster	NAVA vs Pressure Support in prolonged mechanical ventilation: A feasibility study
11	ESICM 2017	Poster	The use of neural monitoring to assist decision- making in terminal extubation
12	ICS 2016	Poster	NAVA in Prolonged Mechanical Ventilation: The challenges of conducting a feasibility
13	UKCCRF 2012	Oral Pres	A randomised feasibility study examining NAVA
14	ISICEM 2011	Poster	An observational retrospective review of utilisation and outcomes of diaphragmatic EMG
15	ESICM 2010	Poster	The Introduction of NAVA into a Central London Teaching Hospital
16	ISICEM 2011	Poster	Diaphragmatic EMG monitoring during common interventions in critically ill adult patients
17	BACCN 2010	Poster	NAVA: Introduction of a new ventilation mode to a General Critical Care Unit
18	BACCN 2010	Poster	NAVA: Establishing the Edi signal as a useful monitoring tool

ICS 2022 Research Prioritisation Shorlist

Factors affecting the use of Neurally Adjusted Ventilatory Assist in the management of critically ill adult patients

> Daniel Hadfield For the degree of PhD

Department of Critical Care & Department of Respiratory Medicine King's College Hospital NHS Foundation Trust

Centre for Human and Applied Physiological Sciences Faculty of Life Sciences and Medicine King's College London

5

/intensivecaresociety

Impact / Future

Impact on future ICU research capacity...

Research leadership, collaboration and support for colleagues across all professional groups...

Impact / Future

@ics_updates

(၀)

@ics_updates

Health Technology Assessment

Innovative ventilation technologies for treatment of patients in ICU commissioning brief

NATIONAL SURVEY (2021 unpublished)

Aims: NAVA availability, use and trial support Sample: ICU clinicians (ICS / UKCCRF)

Results summary:

- 163 responses from 86 NHS hospitals
- Automated technologies available at 63/86 (73.3%) hospitals. NAVA ventilators available in 31% NHS Trusts.
- > Amongst hospitals with NAVA, 56.5% indicated experience
- > Overall opinions:
 - 62.3% would use NAVA if available (31.5% unsure)
 85.4% agreed current evidence is uncertain
 91.5% wanted more evidence.
- Relating to the proposed trial only 4.6% sair' not recruit.

in

Impact / Future

- **Question:** What is the clinical and cost-effectiveness of NAVA for patients at risk of extended durations of mechanical ventilation?
- **Design:** A randomized, parallel group, allocation concealed, controlled, open, phase 3 pragmatic clinical and cost effectiveness trial with internal pilot

Population: Adult ICU admissions + IMV + risk of extended support

- **Sample:** 950 (475 per arm) to detect a 2-day difference in mean duration of MV
- Sites: 40 adult UK ICUs

...starting soon (hopefully)

Acknowledgements

Ged Rafferty, Phil Hopkins, Nick Hart (PhD supervisors); Christine Norton (PhD mentor); KCH ACET Research Team; KCH Critical Care Staff; Fiona Reid and Victoria Cornelius (statistical support during my PhD) and many more... NAVA UK trial team: Danny McAuley, Professor Louise Rose, Gary Mills, Gavin Perkins, Toby Prevost, Reinout Mildner, Luigi Camporota, Huaje Jin, Caroline Murphy, Gerrard Rafferty, Chantal Davies, Bronwen Connolly

