Arterial Blood Gases

Rebecca Sumnall

Education and Practice Development Sister

University Hospitals of Leicester

Session Aims and Objectives

- Identify the indications for taking a blood gas
- Identify the components of a blood gas and an awareness of normal values
- Interpret an arterial blood gas and be able to identify acid-base derangements
- To have a working knowledge of compensation and how this applies to clinical practice

Indications for taking an ABG

Patient deterioration

- Increase/decrease respiratory rate
- Increase/decrease in SPO₂
- Cardiovascular instability
 - ECG changes rate, rhythm, ectopic beats
- Change in urine output/kidney function

Monitoring patient condition

What does an ABG measure?

Measurement	Definition	Range
рН	Overall acid-base balance	7.35-7.45
pCO ₂	Carbon dioxide concentration in arterial blood	4.5-6.0 kPa
p0 ₂	Oxygen level in arterial blood	10-13.5 kPa
HCO ₃ -	Bicarbonate level	22-26 mmol/l
BE	The metabolic aspect of acid-base balance is reflected in base excess	-2 - +2

What do these numbers mean?

pCO₂

This dissolves in plasma to make an acid. Therefore how much pCO₂ is in the blood alters the bodies pH **This is the respiratory component of acidbase balance**

pO2 Oxygenation is important for patients but doesn't impact on acid-base balance

рΗ

This is a measure of how acidic or alkali the blood is

HCO₃⁻ (Bicarbonate)

Bicarbonate is an alkali. Therefore, how much bicarbonate is in the blood alters the bodies pH **This is the metabolic component of acid-base balance**

Oxygenation

Ų

Pulmonary Ventilation

External Respiration

Internal Respiration

Pulmonary Ventilation

- Respiratory gases go in and out of the lungs due to a pressure gradient
- Boyles Law states that if the volume of a closed container increases, the pressure inside the container reduces and vice versa

External Respiration

- Respiratory gases move between the alveoli and the blood via diffusion
- There is a

concentration gradient between the alveoli and the blood which leads to O_2 diffusing into the blood and CO_2 diffusing into the alveoli

Internal Respiration

There is an exchange of gases between blood and the cells due to a concentration gradient

Transport of Gases

Oxygen combines with haem leading to the formation of oxyhaemoglobin

- \blacktriangleright How much O₂ combines with Hb is determined by pO₂
- Full saturation means that all the Hb has been converted to oxyhaemoglobin

Acidotic or Alkalotic?

Acidosis

Too much pCO₂ or not enough HCO₃⁻ will make the patient acidotic

Alkalosis

Too much HCO_3^- or not enough pCO_2 will make the patient alkalotic

Respiratory or metabolic?

- Match the pCO_2 or HCO_3^-
- Is the pCO₂ normal? (4.5-6 kPa)
 - Above 6.0 acidotic
 - Below 4.5 alkalotic
- \blacktriangleright Is the HCO₃⁻ normal? (23-28 mmoll)
 - Below 23 acidotic
 - Above 28 alkalotic

CO₂ matches = respiratory HCO³⁻ matches = metabolic

What does the ABG numbers tell us about the patient?

Respiratory Acidosis

- •pH will be below 7.35
- •pCO₂ will be above 6
- •Conditions:
 - •Type 2 respiratory failure COPD, ARDS, pneumonia

Metabolic Acidosis

- •pH will be below 7.35
- •Bicarbonate will be below 22
- •Conditions:
 - Renal failure,
 ischaemia causing lactic
 acidosis

Respiratory Alkalosis

- •pH will be above 7.45
- •pCO₂ will be below 4.5
- •Conditions:
 - Hyperventilation

Metabolic Alkalosis

- •pH will be below 7.45
- •Bicarbonate will be above 26
- •Conditions:
 - •Vomiting, diarrhoea, loss
 - of gastric fluid

Control of hydrogen ion concentration (pH)

The body will always try to maintain normal pH

- If pH becomes too acidic the body will try and compensate by making more alkali
- If pH becomes too alkaline the body will try and compensate by making more acid

This process is known as compensation

Compensation

Is the CO_2 or HCO_3^- acidotic or alkaolitic as you expect according to the pH?

If the CO_2 or HCO_3 are not what you would expect then there is compensation in the system.

Example:

- The pH is acidotic, CO₂ is acidotic and the HCO₃ is alkalotic
- If the CO₂ matches the pH then the primary problem is respiratory
- acidosis and the HCO_3 is evidence of metabolic compensation.

Control of Hydrogen Ion Concentration

The body controls hydrogen ion concentration (pH) in three main ways

The acid-base buffer system combines with hydrogen ions to avoid excessive changes in pH. This is an **immediate** action

The respiratory centre regulates removal of CO_2 from extracelluar fluid. It acts in a **few minutes** to eliminate CO_2

The kidneys can excrete acid or alkaline urine which will influence hydrogen ion concentration. The renal response is **relatively slow** but the most powerful

Buffering of Hydrogen Ions

- A buffer is a substance that can reversibly bind hydrogen ions
- When hydrogen ion concentration increases the ions get bound to an available buffer.
- When hydrogen ion concentration decreases, hydrogen ions are released from the buffer
- The bicarbonate buffering system is the most important

 $CO_2 + H_2O \rightleftharpoons H_2CO_3$

 $CO_2 + H_2O \rightleftharpoons H_2CO_3 \rightleftharpoons H^+ + HCO_3^-$

Respiratory regulation of acid-base balance

- Acid-base is also controlled by regulating extracellular CO₂
- An increase in ventilation (个TV, 个RR) will lead to an increase in CO₂ elimination
- The pH of extracellular fluid can alter the rate of ventilation

Renal control of acid-base balance

- There are three mechanisms involved in this process
 - Primary active secretion of hydrogen ions
 - Secondary secretion of hydrogen ions
 - Reabsorption of filtered bicarbonate ions and production of new bicarbonate ions

Are the pO_2 & the O_2 saturation normal?

Is the pH normal?

Is the CO₂ normal?

Is the HCO_3^- normal?

Match the CO_2 or the HCO_3^- with the pH

Does the CO_2 or the HCO_3^- go in the opposite direction to what you expect?

6 Stages to ABG Analysis

