Wanagemen t of Cardiac Arrythmias in the ICU

Neil Maddison

Trainee ACCP

Aberdeen Royal Infirmary, NHS Grampian

What will we cover today?

6 STEP APPROACH TO RHYTHM RECOGNITION

ECG HACK – RELATING THE 'PQRST' TO THE ANATOMY OF THE HEART AND NURSING CARE AND MANAGEMENT OF COMMONLY OCCURRING ARRYTHMIAS SEEN

anatomy & Conduction system

- 1. Sinoatrial (SA) node
- 2. Atrioventricular (AV) node
- 3. Bundle of HIS
- 4. Left and Right Bundle Branches

Cardiac cycle

- P Wave = Atrial contraction
- QRS Complex = Ventricular contraction
- T Wave = Ventricular relaxation

P Wave

- Atrial contraction
- SA node firing
- Should be smooth and round

R

S

Q

3

Ρ

SA Node

- Natural pacemaker cell

PR Segment

- Electrical impulse delay though AV node
- Holds onto electrical impulse to allow the ventricles to fill up

R

Q

S

Ρ

AV Node

- 'Gate keeper' cell
- Safety rate filter
- Secondary pacemaker (if SA node fails)
- Back up rate 40-60bpm

PR Interval

- Atrial Contraction + AV Delay
- Start of P wave to the start of QRS complex

R

Q

S

3

Ρ

- Normal timing is 3-5 small squares
- 0.12-0.2 seconds or 120-200 milliseconds

QRS Complex

- Ventricular contraction
- Electrical Impulse travels through Bundle of HIS, L&R Bundle Branches and Purkinje Fibers

R

Q

S

Ρ

- Normal timing is < 3 small squares
- < 0.12 seconds or < 120 milliseconds

Bundle of HIS

- Gateway to the ventricles
- Back up rate 25-40bpm

Bundle Branches and Purkinje Fibers

- Maintain Ventricular synchrony
- Back up rate 15-30bpm

ST Segment

- End of Ventricular contraction
- Normal Isoelectric

R

Q

S

Ρ

T Wave

- Ventricular Relaxation
- Heart returning to resting state

R

Q

S

Ρ

Why bother cardiac monitoring?

- Baseline assessment for cardiac function
- Understand the patients 'normal'
- Recognise
 deterioration

<60 bpm = bradycardia 100 bpm = normal Rhythm recognition Definition Defini

60->100

Is the

Is there electrica I activity?

Is the rhythm regular or irregular?

-//~

Is the Ca QRS complex

Can you How is the see atrial atrial activity activity? related to If irregular, try to establish if there is a pattern to the irregularity Normal is narrow (<3 small squares or 0.12 secs) Broad QRS suggests a Ventricular issue Look for P Waves or any activity before the QRS complex How are the P Waves (if present) related to the QRS complexes? Should be a 1:1 ratio.

Atrial fibrillation (AF - RVR)

- New onset Rapid Ventricular Response
- Irregularly irregular
- Narrow QRS complex
- Absence of P waves

Understan ding AF

 Atrial arrythmia → disorganised electrical activity causing ineffective atrial contraction and irregular ventricular contraction

 Paroxysmal, persistent or permanent

Priorities in treating fast AF

Rate VS Rhythr

Rate Control

- Beta-Blockers (Bisoprolol/Metoprolol)
- Digoxin (slow acting in pts with increased sympathetic tone)
- Verapamil cardiac depressant effect

Rhythm Control

- Electrical (Synchronised D.C Cardioversion)
- Used in episodes of haemodynamic comprise
- Chemical (Amiodarone)

Clinical Sce

- Donald Sim (68); ♂
- CICU \rightarrow C.A.B.G x3 [2 POD]
- Increased O2 demand escalating N(0.75
- CXR; acute pulmonary oedema
- Oliguria UO 20/20/10
- Imp: Pulmonary Oedema
- Plan: 40mg IV Furosemide
- Accompation $\rightarrow 110.200/220/160$

Cardiac Rhythm: (Fast AF)

Priorities? Thoughts?

HR 160bpm 86/44 (58) Noradrenaline 2ml/hr

nediate Nursing managem

R.R 24/min SpO2 86% HFNC 50L / FiO2 0.3 Hypoxia due to increased myocardial oxygen demand Increase oxygenation

HR 160bpm 86/44 (58) Noradrenaline 2ml/hr Reduction to Cardiac Output due to loss of atrial 'kick' \rightarrow decreased ventricular filling BP = CO x SVR Fluid challenge or increase

ABG \rightarrow Assess for Metabolic abnormalities & electrolyte replacement <u>Replace K+</u>

12lead ECG \rightarrow Confirm the diagnosis of AF + assess for evidence of ischaemia

Impression: Hypokalemia secondary to Furosemide Plan: Titrate FiO2, Titrate Noradrenaline, replace electrolytes

RADIOMETER ABL90 SERIES

ABL90 WARD 201	09:15 06/10/2023
PATIENT REPORT	Syringe – S 65uL Sample # 18779
Identification	
Patient ID	0123456 501 / 30%
Patient last name	Mouse JULT JU 10
Patient first name	Mickey HFNC
Sample Type	Arterial
Operator	Neil Maddison
Blood gas values	
cH+	28 nmol/L
`рН	7.49 [7.350 – 7.450]
pCO2	3.9 kPa [4.3 - 6.4]
pO2	8.4 kpa [11.1 – 14.4]
Oximetry values	
Hct	30.6 %
tHb	81.0 g/L [115 – 178]
sO2	86.0 % [94.0 – 98.0]
FO2Hb	92.6 % [94.0 – 98.0]
FCO2Hb	1.2 % [0.0 – 3.0]
FHHb	2.8 % [0.0 – 2.9]
FMetHb	0.3 % [0.0 – 1.5]
Electrolyte values	
K+	3.1 mmol/L [3.5 – 5.1]
Na+	138 mmol/L [136 – 145]
Ca2+	0.991 mmol/L [1.15 – 1.33]
Cl-	101 mmol/L [98 – 107]
Metabolite values	
Glu	7.1 mmol/L [4.1-5.6]
Lac	2.4 mmol/L [0.2 – 1.8]
Acid-base status	
Base	-3.2 mmol/L
HCO3- (P. st)	22 mmol/L
HCO3- (P)	18.4 mmol/L

ELECTROLYTE AND METABOLIC DERANGEMENT

POTASSIUM

- Hypokalaemia can lead to result in AF, PVCs and ventricular arrythmias
- **Hyper**kalaemia can lead to asystole

Target a potassium between
3.5 – 5.0 mmol/L

MAGNESIUM

- Helps to regulate regular cardiac conduction and the movement of potassium and calcium over the cardiac muscle
- Magnesium deficiency is known to lead to excessive Potassium wastage!!!
- Target a Magnesium >/= 1.0 mmol/L

CALCIUM

 Hypocalcaemia is associated with QT prolongation and ventricular arrythmias

Target a Calcium
 >/= 1.0 mmol/L

Bradyarrythmias

- UL 210 × 200 Nhu

- Regular
- Narrow QRS
- P wave : QRS comples → 1 : 1 ratio
- If symptom free no treatment is required but ongoing monitoring for further conduction changes

Sinus bradycardia

Understanding brady-awythmias

Defined as a resting Heart Rate <60bpm

in the conduction evetem

Potential causes:

- Physiological (athletes or sleeping)
- Cardiac origin (AV blocks or Sinus-node disease)
- Non-cardiac origin (Vasovagal, hypothermia, hyperkalaemia)
- Drug-induced (Beta-blockers, Digoxin, Amiodarone)

Unter can be asymptomatic, but may be cardiovascularly unstable if there is a drop in Cardiac Output \rightarrow reduced end-organ perfusion

Idioventricula r rhythm "Rhythm of the last resort"

- Broad QRS No P-waves : QRS complex ratio $\rightarrow 0_{-}$: **Fhough** 1 ratio
- Hearts safety mechanism to prevent ventricular standstill (asystole) when no impulse is conducted above the His-Purkinje system

1-215525-e55d4b8f

views • Neil Maddison (NHS Grampian) • Neil Maddison (NHS Grampian) > Documents

walata what this widea is about

Nursing Care and Medical Management

What effect would a slow ventricular HR have on the patients Cardiac Output?

Management

DRUGS

Atropine vs Glycopyrrolate

Isoprenaline

Adrenaline Reassuring the patient + Bedrest ABCDE 12Lead ECG, bloods, access Review Prescribed drugs

HyperKalae mia

HYPER-K-al-AEMIA ΡΟΤΑ **BLOO SSIU** RAI D SE Μ D

Understanding Hyperkalaemia

- Blood is made up of plasma, RBC, WBC, platelets
- Potassium moved in & out of cells in the Na+/K+ pump
- Normal serum K+ \rightarrow 3.5 5.0 mmol/L
- Within the red blood cell potassium levels \rightarrow K+ = 150 mmol/L
- Rely on homeostasis mechanism !!

Causes of hyperkalaemia

- Excreted by kidneys (90%) and GI tract (10%)
- Medications
 - Ace-inhibitors, NSAIDs, Potassium-sparing diuretics
- Trauma + Burns + Long lies
- DKA (lack of insulin)
- IV Fluids

Worsening Hyperkalaemia

- Severe Hyperkalaemia is a medical emergency due to the risk of lifethreatening arrythmias
- Reversable causes of cardiac arrest
- Prompt recognition + treatment is vital

 Complications and changes to ECG worsen as Potassium increases

Hyperkalaemia ECG hack

1. Peaked T-waves

- T-wave increases in amplitude
- "Tall tented T-waves"
- Repolarisation abnormalities occur

• Serum K+ = 5.5 – 6.5mmol/L

2. Prolonged PR interval

- Widening of P-waves and PR prolongation
- Progressive atrial paralysis occurs
- Delayed conduction through the atria and within the AV node

• Serum K+ = 6.5 –

3. Dropped P waves

- P-waves become 'dropped'
- SA node suppression
- As atrial paralysis
 progresses
- Serum K+ = 7mn pl/L

4. Widening qrs complex

- Bradycardic conduction abnormalities start occurring
- Sinus bradycardia, AV blocks, Slow AF, Bundle Branch Blocks
- Serum K+ = 7 9 mmol/L

Potassium Greater than 9 is a bad 'Sine'

Priorities

Thoughts

- As levels increase above 9mmol/L life threatening arrythmias can begin to occur
- Sine Wave, Asystole, VF, PEA

Amai Paraiysis

Potassium Greater than 9 is a

Management

Prompt treatment and ongoing management is essential to prevent hyperkalaemia cardiac arrest

-//-

Goals: stabilise the myocardial from cardiotoxicity, shift & remove K+, and manage the precipitating factors

0

Patients often present asymptomatic / non-specific / generalised weakness

Assessment of effectiveness is monitored using 12lead ECG + continuous cardiac monitoring

Protect the heart

- Calcium is known to stabilise the cardiac membrane excitability provoked by excess potassium
- Preventing life threatening arrythmias
- Rapid onset for improving adverse ECG appearances; 3 mins
- Effective for 30-60 mins

- Administer Insulin which activates Na+/K+ pump to move potassium intracellularly
- Onset of effectiveness 15mins; peaking around 30-60 mins
- Gradual rebound K+ usually after 2 hours
- Effectiveness if increased when given alongside

- Lower whole body Potassium renally with Diuresis or CRRT / IHD
- Growing body of evidence of K+ binders potential role in delays to dialyse
- Sodium Zirconium Cyclosilicate oral binder that works

- Regular monitor of blood glucose is essential following insulin-dextrose infusion to prevent latrogenic hypoglycaemia until 6hrs after treatment
- Glucose maintenance infusions should be commenced if Glucose is <7mmol/L pre-treatment

- Review prescribed medications that are worsening hyperkalaemia
- Liase with dietitian for nutritional support and avoid constipation
- Regular blood electrolyte monitoring
- Attend regular dialysis in chronic renal failure patients.

Join at slido.com #BACCN

(i) Start presenting to display the joining instructions on this slide.

Where does the heart's electrical impulse originate?

What is the most common type of cardiac arrhythmia in the ICU?

Which cardiac rhythm is characterized by a sawtooth pattern on an ECG?

When does the PR interval on an ECG represent a firstdegree heart block?

Why is bradycardia a concern?

Which medication is commonly used to treat ventricular arrhythmias in the ICU?

What is the most common complication of atrial fibrillation?

When should electrical cardioversion be considered for atrial fibrillation in the ICU?

slido

Please download and install the Slido app on all computers you use

Which medications are used to shift potassium intracellularly in the management of hyperkalaemia?

When should dialysis be considered in the management of hyperkalaemia in the ICU?

What we covered today!

6 STEP APPROACH TO RHYTHM RECOGNITION

ECG HACK – RELATING THE 'PQRST' TO THE ANATOMY OF THE HEART AND NURSING CARE AND MANAGEMENT OF COMMONLY OCCURRING ARRYTHMIAS SEEN

